4.5 Article

A mathematical model of rat proximal tubule and loop of Henle

期刊

AMERICAN JOURNAL OF PHYSIOLOGY-RENAL PHYSIOLOGY
卷 308, 期 10, 页码 F1076-F1097

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajprenal.00504.2014

关键词

glomerulotubular balance; tubuloglomerular feedback; ammonia; glucose; glomerular hyperfiltration

资金

  1. National Institute of Arthritis, Diabetes, and Digestive, and Kidney Diseases [R01-DK-29857]

向作者/读者索取更多资源

Proximal tubule and loop of Henle function are coupled, with proximal transport determining loop fluid composition, and loop transport modulating glomerular filtration via tubuloglomerular feedback (TGF). To examine this interaction, we begin with published models of the superficial rat proximal convoluted tubule (PCT; including flow-dependent transport in a compliant tubule), and the rat thick ascending Henle limb (AHL). Transport parameters for this PCT are scaled down to represent the proximal straight tubule (PST), which is connected to the thick AHL via a short descending limb. Transport parameters for superficial PCT and PST are scaled up for a juxtamedullary nephron, and connected to AHL via outer and inner medullary descending limbs, and inner medullary thin AHL. Medullary interstitial solute concentrations are specified. End-AHL hydrostatic pressure is determined by distal nephron flow resistance, and the TGF signal is represented as a linear function of end-AHL cytosolic Cl concentration. These two distal conditions required iterative solution of the model. Model calculations capture inner medullary countercurrent flux of urea, and also suggest the presence of an outer medullary countercurrent flux of ammonia, with reabsorption in AHL and secretion in PST. For a realistically strong TGF signal, there is the expected homeostatic impact on distal flows, and in addition, a homeostatic effect on proximal tubule pressure. The model glycosuria threshold is compatible with rat data, and predicted glucose excretion with selective 1Na(+): 1glucose cotransporter (SGLT2) inhibition comports with observations in the mouse. Model calculations suggest that enhanced proximal tubule Na+ reabsorption during hyperglycemia is sufficient to activate TGF and contribute to diabetic hyperfiltration.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据