4.2 Article

Signatures of bulk topology in the non-linear optical spectra of Dirac-Weyl materials

期刊

EUROPEAN PHYSICAL JOURNAL B
卷 91, 期 5, 页码 -

出版社

SPRINGER
DOI: 10.1140/epjb/e2018-80559-1

关键词

-

向作者/读者索取更多资源

Graphene, topological insulators (TI) and the Weyl semimetal are shown to be well-characterized using the phenomenon of anomalous Rabi oscillation (ARO). These oscillations occur far from conventional resonance and Floquet theory shows them to be unique to these systems. Of particular interest is the bulk topological insulator (TI) where the wave-vector dependent frequency of the ARO is seen to be gapped in topologically trivial situations and gapless when there is a non-vanishing Chern number. It is shown that the Chern number may be directly inferred by performing a pump-probe experiment in the bulk without referring to surface states. A simpler alternative to the Lindblad method is invoked in order to incorporate dephasing effects that despite leading to a non-unitary time evolution of the wave-function, is nevertheless, probability conserving. The differential transmission coefficient versus the pump pulse duration (when all else is held fixed) has the form of a sinusoidal function with an amplitude that decays as a power law in the pump duration (alternatively, the area of the pump pulse). The exponent of this power law decay is indicative of the Chern number of the bulk in case of TI and more generally indicative of the particular member of the family of materials that may be collectively referred to as - Dirac-Weyl materials.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据