4.7 Article

The importance of litter traits and decomposers for litter decomposition: a comparison of aquatic and terrestrial ecosystems within and across biomes

期刊

FUNCTIONAL ECOLOGY
卷 30, 期 5, 页码 819-829

出版社

WILEY
DOI: 10.1111/1365-2435.12589

关键词

carbon cycle; forest floors; litter carbon loss; litter micronutrients; litter nitrogen loss; streams

类别

资金

  1. BioCycle' research project (part of the ESF EUROCORES programme EuroDIVERSITY)
  2. People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme (FP7) under REA [DECOMFORECO-2011-299214]

向作者/读者索取更多资源

1. Plant leaf litter comprises the major common source of energy and nutrients in forested soil and freshwater ecosystems world-wide. However, despite the similarity of physical and biochemical processes, generalizations across aquatic and terrestrial ecosystems regarding litter decomposition drivers remain elusive. 2. We re-analysed data from a published field decomposition experiment conducted in two ecosystems (forest floors and streams) across five biomes (from the tropics to subarctic) with increasing decomposer community complexity (microbes, microbes and mesofauna, microbes and meso- and macrofauna). 3. Using a wide litter quality gradient (15 litter combinations), we aimed to disentangle the roles of decomposer community complexity from that of leaf litter traits (18 traits encompassing four broad trait categories: nutrients, C quality, physical structure and stoichiometry) on litter C and N loss. Comparisons of decomposition drivers between ecosystems were evaluated across and within biomes. 4. Differences in environmental conditions (e.g. climate, soil/water fertility) and litter nutrients - with a particular focus on Mg and Ca - across biomes were the major drivers of litter C loss in both ecosystems, but decomposer complexity also played a prominent role in streams. Within biomes, we observed consistent effects of litter nutrients and stoichiometry on litter C and N loss between ecosystems, but the effects of decomposer complexity differed between streams and forest floors in the temperate, Mediterranean and tropical biomes. 5. Our results highlight that, beyond the litter traits commonly identified as controlling decomposition (e.g. C, N and lignin), micronutrients (e.g. Mg and Ca) can also play an important, and globally consistent, role in both aquatic and terrestrial ecosystems. In addition, in forest streams the complexity of decomposer communities had similar importance as litter traits for predicting litter C and N turnover across all five biomes. 6. The identification of common drivers in our large-scale ecosystem comparison suggests a basis to develop common models across aquatic and terrestrial ecosystems for C and N dynamics during decomposition. Future modelling efforts should account for the global similarities (litter micronutrient effects) and biome-level differences (contingent decomposer effects) found between ecosystems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据