4.6 Article

Multifunctional doxorubicin-loaded magnetoliposomes with active and magnetic targeting properties

期刊

EUROPEAN JOURNAL OF PHARMACEUTICAL SCIENCES
卷 123, 期 -, 页码 162-172

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.ejps.2018.07.044

关键词

Magnetoliposomes; Magnetophoretic mobility; Targeting; Brain; Cancer

资金

  1. European Community's Seventh Framework Programme (FP7/2007-2013) [212043]

向作者/读者索取更多资源

Multifunctional magnetoliposomes (MLs) with active and magnetic targeting potential are evaluated as platform systems for drug targeting applications. USPIO-encapsulating MLs are prepared by freeze drying/extrusion, decorated with one or two ligands for brain or cancer targeting (t-MLs), and actively loaded with Doxorubicin (DOX). MLs have mean diameters between 117 and 171 nm. Ligand attachment yields and DOX-loading efficiency are sufficiently high, 78-95% and 89-92%, respectively, while DOX loading and retention is not affected by co-entrapment of USPIOs, and USPIO loading/retention is not modulated by DOX. Attachment of ligands, also does not affect DOX or USPIO loading. Interestingly, MLs have high magnetophoretic mobility (MM) compared to free USPIOs, which is not affected by surface coating with PEG (up to 8 mol%), but is slightly reduced by Chol incorporation in their membrane, or when functional groups are immobilized on their surface. ML size, (directly related to number of USPIOs entrapped per vesicle), is the most important MM-determining factor. MM increases by 570% when ML size increases from 69 to 348 nm. Targeting potential of t-MLs is verified by enhanced: (i) transport across a cellular model of the blood-brain-barrier, and (ii) anti-proliferative effect towards B16 melanoma cells. The potential of further enhancing t-ML targeting magnetically is verified by additional enhancements of (i) and (ii), when experiments are performed under a permanent magnetic field.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据