4.4 Article

Chimeric MicroRNA-1291 Biosynthesized Efficiently in Escherichia coli Is Effective to Reduce Target Gene Expression in Human Carcinoma Cells and Improve Chemosensitivity

期刊

DRUG METABOLISM AND DISPOSITION
卷 43, 期 7, 页码 1129-1136

出版社

AMER SOC PHARMACOLOGY EXPERIMENTAL THERAPEUTICS
DOI: 10.1124/dmd.115.064493

关键词

-

资金

  1. National Institutes of Health National Cancer Institute [1U01CA175315]
  2. National Science Foundation [CHE 1212625]
  3. Natural Science Foundation of China [81320108027]
  4. Ministry of Science and Technology of China [2012ZX09506001-004]
  5. Direct For Mathematical & Physical Scien
  6. Division Of Chemistry [1212625] Funding Source: National Science Foundation

向作者/读者索取更多资源

In contrast to the growing interests in studying noncoding RNAs (ncRNAs) such as microRNA (miRNA or miR) pharmacoepigenetics, there is a lack of efficient means to cost effectively produce large quantities of natural miRNA agents. Our recent efforts led to a successful production of chimeric pre-miR-27b in bacteria using a transfer RNA (tRNA)-based recombinant RNA technology, but at very low expression levels. Herein, we present a high-yield expression of chimeric pre-miR-1291 in common Escherichia coli strains using the same tRNA scaffold. The tRNA fusion pre-miR1291 (tRNA/mir-1291) was then purified to high homogeneity using affinity chromatography, whose primary sequence and posttranscriptional modifications were directly characterized by mass spectrometric analyses. Chimeric tRNA/mir-1291 was readily processed to mature miR-1291 in human carcinoma MCF-7 and PANC-1 cells. Consequently, recombinant tRNA/mir-1291 reduced the protein levels of miR-1291 target genes, including ABCC1, FOXA2, and MeCP2, as compared with cells transfected with the same doses of control methionyl-tRNA scaffold with a sephadex aptamer (tRNA/MSA). In addition, tRNA-carried premiR-1291 suppressed the growth of MCF-7 and PANC-1 cells in a dose-dependent manner, and significantly enhanced the sensitivity of ABCC1-overexpressing PANC-1 cells to doxorubicin. These results indicate that recombinant miR-1291 agent is effective in the modulation of target gene expression and chemosensitivity, which may provide insights into high-yield bioengineering of new ncRNA agents for pharmacoepigenetics research.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据