3.8 Article

Thermal Management of Lithium-Ion Pouch Cell with Indirect Liquid Cooling using Dual Cold Plates Approach

期刊

出版社

SAE INT
DOI: 10.4271/2015-01-1184

关键词

Lithium-ion Battery; Thermal Management; EVs and HEVs; Heat Generation; Thermal Characteristics; Thermal Image

向作者/读者索取更多资源

The performance, life cycle cost, and safety of electric and hybrid electric vehicles (EVs and HEVs) depend strongly on their energy storage system. Advanced batteries such as lithium-ion (Li-ion) polymer batteries are quite viable options for storing energy in EVs and HEVs. In addition, thermal management is essential for achieving the desired performance and life cycle from a particular battery. Therefore, to design a thermal management system, a designer must study the thermal characteristics of batteries. The thermal characteristics that are needed include the surface temperature distribution, heat flux, and the heat generation from batteries under various charge/discharge profiles. Therefore, in the first part of the research, surface temperature distribution from a lithium-ion pouch cell (20Ah capacity) is studied under different discharge rates of 1C, 2C, 3C, and 4C. In the second part of the research, the total heat generation from a particular battery is obtained under different discharge rates (1C, 2C, 3C, and 4C) and different boundary conditions (cooling bath temperature of 5 degrees C, 15 degrees C, 25 degrees C, and 35 degrees C). In the third part of the research, the heat flux profile is studied at three different locations on the top surface of the pouch cell (first, near the cathode; second, near the anode; and third, at the center of the cell along the height of the cell) using heat flux sensors. In the fourth part of the research, thermal images from a lithium-ion pouch cell are obtained at different discharge rates to qualitatively evaluate the thermal behaviour and temperature distribution. A FLIR System Therma CAM model S60 IR camera is used to obtain thermal images.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据