4.7 Article

Minimizing the number of workers in a paced mixed-model assembly line

期刊

EUROPEAN JOURNAL OF OPERATIONAL RESEARCH
卷 272, 期 1, 页码 188-194

出版社

ELSEVIER
DOI: 10.1016/j.ejor.2018.05.072

关键词

Combinatorial optimization; Workforce assignment; Production line; Computational complexity; Algorithms

向作者/读者索取更多资源

We study a problem of minimizing the maximum number of identical workers over all cycles of a paced assembly line comprised of m stations and executing n parts of k types. There are lower and upper bounds on the workforce requirements and the cycle time constraints. We show that this problem is equivalent to the same problem without the cycle time constraints and with fixed workforce requirements. We prove that the problem is NP-hard in the strong sense if m = 4 and the workforce requirements are station independent, and present an Integer Linear Programming model, an enumeration algorithm and a dynamic programming algorithm. Polynomial in k and polynomial in n algorithms for special cases with two part types or two stations are also given. Relations to the Bottleneck Traveling Salesman Problem and its generalizations are discussed. (C) 2018 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据