4.5 Article

On the initial evolution of the weak turbulence spectrum in a system with a decay dispersion relation

期刊

EUROPEAN JOURNAL OF MECHANICS B-FLUIDS
卷 71, 期 -, 页码 103-112

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.euromechflu.2018.03.015

关键词

Nonlinear waves; Weak turbulence theory; Generalized Kinetic equation; Non-resonant interactions

资金

  1. JSPS KAKENHI [17H02860]
  2. Grants-in-Aid for Scientific Research [17H02860, 15K17971] Funding Source: KAKEN

向作者/读者索取更多资源

The rate of change epsilon(k, t) = partial derivative E(k, t)/partial derivative t of the energy spectrum E(k, t) of a weak turbulence in a system with a decay dispersion relation is investigated with particular interests in the initial stage of evolution such as the first several tens of periods. The theoretical predictions given by the kinetic equation of Hasselmann and that of Janssen which have been derived by the weak turbulence theory are compared with the results of direct numerical simulation (DNS) with a great accuracy. It is shown that epsilon(k, t) predicted by Janssen's equation correctly reproduces the rapid variation of epsilon(k, t) with the linear time scale which is observed in DNS, while that predicted by Hasselmann's equation does not. It is also shown that the transient behavior of the asymptotic approach of Janssen's epsilon(k, t) to Hasselmann's one strongly depends on the wavenumber. For wavenumbers smaller than the spectral peak, the approach is exponential, while for wavenumbers larger than the spectral peak it contains a damped oscillation whose amplitude decays in time like 1/t. A reasonable explanation for the origin of this damped oscillation is given in terms of the frequency mismatch of the three-wave sum interactions. (C) 2018 Elsevier Masson SAS. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据