4.7 Article

Enhanced oxidative desulfurization in a film-shear reactor

期刊

FUEL
卷 156, 期 -, 页码 142-147

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.fuel.2015.04.028

关键词

Oxidative desulfurization; Film-shear reactor; Sulfur heterocycles; Recalcitrant thiophenes; Biphasic reaction

资金

  1. National Science Foundation [DGE-0231997]
  2. Army Research Laboratory [W911NF-07-2-0083]
  3. King Abdulaziz City for Science and Technology (KACST) through the Science & Technology Unit at King Fahd University of Petroleum & Minerals (KFUPM), National Science, Technology and Innovation Plan (NSTIP) [12-PET3009-04]

向作者/读者索取更多资源

A film-shear reactor was used to significantly enhance the oxidative desulfurization (ODS) of model fuels using hydrogen peroxide as the oxidant. Significant increases in the amount of sulfur removed were seen in comparison to conventionally stirred ODS reactions. For example, up to 50% desulfurization occurred in a single pass of the model fuel through the film-shear reactor at 10 degrees C. The desulfurization reactions were very fast in the reactor, occurring on the time scale of seconds to minutes. Desulfurization was studied under a variety of conditions, and a statistical design of experiment (DOE) showed that the fuel to oxidant ratio was the only statistically significant parameter to impact the extent of desulfurization: a larger amount of oxidant led to higher desulfurization. A variety of benzothiophene contaminants (benzothiophene, 2-methylbenzothiophene, 5-methylbenzothiophene, dibenzothiophene, and 4,6-dimethyldibenzothiophene) were examined, and the film-shear reactor was effective in removing all of these contaminants. The film-shear reactor was effective at both low (0.5-2.0 mL/min) and high (100-300 mL/min) flow rates. Experiments showed that oxygen in air was not an effective oxidant for ODS in the film-shear reactor. Experiments using Mo(CO)(6) as a molecular thermometer showed that hot spots'' are not forming in the film-shear reactor, and thus the increase in the ODS rate cannot be attributed to intense thermal activation occurring within the film-shear reactor. It is suggested that superb mixing of the aqueous and fuel phases is responsible for the increased rate of ODS in the reactor. (C) 2015 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据