4.7 Article

CFD model of the coal carbonization process

期刊

FUEL
卷 150, 期 -, 页码 415-424

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.fuel.2015.02.044

关键词

Coking process; Water evaporation and condensation; Heat and mass transfer; Porous media; CFD modeling

资金

  1. Innovative Economy Operational Program funding of the European Regional Development Fund [01.01.02-24-017/08]

向作者/读者索取更多资源

A 2D transient model of coupled heat and mass transfer phenomena occurring in a single coke chamber is developed. The interior of the chamber is partially filled by the coal charge, which is assumed to be a porous media. The standard equations of continuity, species transport, momentum and energy describing the flow of the single-phase fluid are applied. The model considers a range of aspects associated with the carbonization process, such as the evaporation and condensation of the water, the evolution of the volatile components, the change in the density and the flow resistance during the coking process. Conductive, convective and radiative types of heat transfer are included in the model. The model also provides for the creation of the lateral gap near the walls. Water evaporation and condensation are modeled with the modified Hertz-Knudsen equation linked to the sorption isotherm. The model of the specific process is implemented in the commercial CFD software ANSYS Fluent. Results of the CFD simulation are compared with thermocouple measurements performed at the Centre de Pyrolyse de Marienau test unit. Commonly known information regarding raw gas evolution and energy consumption are also used for validation purposes. The model agrees well with both experimental data and data from the literature. (C) 2015 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据