4.7 Article

Numerical simulation of hydraulic fracturing coalbed methane reservoir with independent fracture grid

期刊

FUEL
卷 143, 期 -, 页码 543-546

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.fuel.2014.11.070

关键词

Hydraulic fracturing; Coalbed methane; IMPES method; Independent fracture grid

向作者/读者索取更多资源

Hydraulic fracturing stimulation technology is an effective method for increasing coalbed methane production, especially for coal seam with low permeability, low reservoir pressure and low gas saturation. Normally, fracture is simulated according to the law of equivalent percolation resistance, leading to the limit that fracture is several hundred times enlarged meanwhile the permeability is decreased, with wellbore located in the enlarged fracture, more fluids will produce through high conductive fracture path into wellbore. Based on theories and methods from oil-gas geology and mechanics of flow through porous media, this paper presents a two-phase, 3D flow and hydraulic fracturing model of dual-porosity media. A finite difference numerical model with independent fracture grid has been developed and applied successfully to a coalbed methane reservoir. Comparison results show that independent fracture grid is more effective than equivalent percolation resistance method in production fitting. Actual gas production data is consistent with results calculated by the new model, while prediction from equivalent percolation resistance is higher. (C) 2014 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据