4.7 Article

Experimental study on diesel conventional and low temperature combustion by fueling four isomers of butanol

期刊

FUEL
卷 141, 期 -, 页码 109-119

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.fuel.2014.10.053

关键词

Butanol isomers; Diesel engine; Low temperature combustion; Soot emissions; Exhaust gas recirculation (EGR)

资金

  1. National Natural Science Found of China (NSFC) [51176140]
  2. Tianjin Research Program of Application Foundation and Advanced Technology [14JCQNJC07300]
  3. National Basic Research Program of China (973 Program) [2013CB228402]

向作者/读者索取更多资源

Effects of butanol on conventional and low temperature combustion were investigated on a single-cylinder diesel engine. Four butanol isomers, n-butanol, sec-butanol, iso-butanol and tert-butanol were added into diesel by volume ratios of 20% and 40%, referred to as N20/N40, S20/S40, I20/I40 and T20/T40, respectively. Experiments were conducted over a wide range of EGR from 0% to similar to 65%. Results indicate that butanol/diesel blends show the retarded combustion phasing and higher premixed heat release compared with pure diesel. Differences in cylinder pressures and heat release rates among different butanol/diesel blends get larger as EGR rate and blending ratio increases. Ignition delays from the longest to shortest are in the sequence of iso-butanol/diesel, sec-butanol/diesel, n-butanol/diesel and tert-butanol/diesel. Butanol/diesel blends exhibit higher thermal efficiencies compared with diesel in a certain EGR region. The addition of butanol isomers can significantly reduce soot emission and a higher blending ratio results in greater soot reduction. And the soot emissions, from the highest to lowest, are in the order of tertbutanol/diesel, n-butanol/diesel, sec-butanol/diesel, and iso-butanol/diesel, which is consistent with the commonly recognized view that a lower soot emission accompanies with a longer ignition delay. The difference in soot emission among different butanol/diesel blends is predominantly determined by fuel's cetane number, meanwhile physical properties such as volatility can also influence soot emissions to some extent. Regulated gaseous emissions are not significantly affected by addition of butanol isomers. (C) 2014 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据