4.7 Article

Effect of gas phase alkali species on tar reforming catalyst performance: Initial characterization and method development

期刊

FUEL
卷 154, 期 -, 页码 95-106

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.fuel.2015.03.027

关键词

Tar reforming; Ni catalyst; Biomass gasification; Alkali; Sulfur; Potassium

资金

  1. Swedish Energy Agency, academic and industrial partner (E.ON)
  2. Swedish Energy Agency, academic and industrial partners (ANDRITZ)

向作者/读者索取更多资源

In thermochemical conversion of biomass to synthesis gas and biofuels, the effect of varying gas phase alkali concentrations on tar reforming catalyst performance in combination with gas phase sulfur and chlorine is largely unknown. The current study demonstrates a new methodology for investigating gas phase alkali adsorption and presents results for early stage adsorption on a Ni-based catalyst under realistic industrial conditions. The experiments were carried out using pine pellets as feedstock in a setup consisting of a 5 kW atmospheric bubbling fluidized bed gasifier, a high temperature hot gas filter and a catalytic reactor - all operating at 850 degrees C. A potassium chloride solution was atomized with an aerosol generator, and the produced submicrometer KCl particles were continuously introduced to the catalytic reactor where they rapidly evaporated to form KCl (g). The accurate dosing of gas-phase alkali was combined with elimination of transient effects in catalytic performance due to catalyst sintering and S adsorption, and results for K uptake in relation to sulfur uptake were obtained. Different KCl levels in the gas phase demonstrates different initial uptake of K on the catalyst surface, which at low K coverage (theta(K)) is approximately linearly proportional to time on stream. The results also show a clear suppressing effect of sulfur adsorption on potassium uptake. Indications of a slow approach to K equilibration on the catalyst were observed. The potential of the developed methodology for detailed studies under close to industrial conditions is discussed. (C) 2015 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据