4.7 Article

DUST IN THE WIND: THE ROLE OF RECENT MASS LOSS IN LONG GAMMA-RAY BURSTS

期刊

ASTROPHYSICAL JOURNAL
卷 805, 期 2, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/0004-637X/805/2/159

关键词

gamma-ray burst: general; gamma-ray burst: individual (GRBs 060218, 100316D, 980425, 130925A); supernovae: general

资金

  1. NSF [1066293]
  2. David and Lucile Packard Foundation Fellowship for Science and Engineering award

向作者/读者索取更多资源

We study the late-time (t > 0.5 days) X-ray afterglows of nearby (z < 0.5) long gamma-ray bursts (GRBs) with Swift and identify a population of explosions with slowly decaying, super-soft (photon index Gamma(x) > 3) X-ray emission that is inconsistent with forward shock synchrotron radiation associated with the afterglow. These explosions also show larger-than-average intrinsic absorption (NHx,i > 6 x 10(21) cm(-2)) and prompt gamma-ray emission with extremely long duration (T-90 > 1000 s). The chance association of these three rare properties (i.e., large NHx,i, super-soft Gamma(x), and extreme duration) in the same class of explosions is statistically unlikely. We associate these properties with the turbulent mass-loss history of the progenitor star that enriched and shaped the circumburst medium. We identify a natural connection between NHx,i, Gamma(x), and T-90 in these sources by suggesting that the late-time super-soft X-rays originate from radiation reprocessed by material lost to the environment by the stellar progenitor before exploding (either in the form of a dust echo or as reprocessed radiation from a long-lived GRB remnant), and that the interaction of the explosion's shock/jet with the complex medium is the source of the extremely long prompt emission. However, current observations do not allow us to exclude the possibility that super-soft X-ray emitters originate from peculiar stellar progenitors with large radii that only form in very dusty environments.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据