4.4 Article

A machine learning approach to detect changes in gait parameters following a fatiguing occupational task

期刊

ERGONOMICS
卷 61, 期 8, 页码 1116-1129

出版社

TAYLOR & FRANCIS LTD
DOI: 10.1080/00140139.2018.1442936

关键词

Inertial measurement unit (IMU); classification; physical fatigue; wearable sensors

资金

  1. American Society for Safety Engineers (ASSE) Foundation

向作者/读者索取更多资源

The purpose of this study is to provide a method for classifying non-fatigued vs. fatigued states following manual material handling. A method of template matching pattern recognition for feature extraction ($1 Recognizer) along with the support vector machine model for classification were applied on the kinematics of gait cycles segmented by our stepwise search-based segmentation algorithm. A single inertial measurement unit on the ankle was used, providing a minimally intrusive and inexpensive tool for monitoring. The classifier distinguished between states using distance-based scores from the recogniser and the step duration. The results of fatigue detection showed an accuracy of 90% across data from 20 recruited subjects. This method utilises the minimum amount of data and features from only one low-cost sensor to reliably classify the state of fatigue induced by a realistic manufacturing task using a simple machine learning algorithm that can be extended to real-time fatigue monitoring as a future technology to be employed in the manufacturing facilities.Practitioner Summary: We examined the use of a wearable sensor for the detection of fatigue-related changes in gait based on a simulated manual material handling task. Classification based on foot acceleration and position trajectories resulted in 90% accuracy. This method provides a practical framework for predicting realistic levels of fatigue.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据