4.4 Article

Antibiotics mineralization by electrochemical and UV-based hybrid processes: evaluation of the synergistic effect

期刊

ENVIRONMENTAL TECHNOLOGY
卷 40, 期 26, 页码 3456-3466

出版社

TAYLOR & FRANCIS LTD
DOI: 10.1080/09593330.2018.1478453

关键词

UV-based processes; electrochemical oxidation; hybrid process; photo-assisted electrochemical oxidation; antibiotics

资金

  1. CAPES [DGPU-2015/7595/14-0]
  2. CNPq
  3. FAPERGS
  4. Cyted
  5. FINEP

向作者/读者索取更多资源

Antibiotics are not efficiently removed in conventional wastewater treatments. In fact, different advanced oxidation process (AOPs), including ozone, peroxide, UV radiation, among others, are being investigated in the elimination of microcontaminants. Most of AOPs proved to be efficient on the degradation of antibiotics, but the mineralization is on the one hand not evaluated or on the other hand not high. At this work, the UV-based hybrid process, namely Photo-assisted electrochemical oxidation (PEO), was applied, aiming the mineralization of microcontaminants such as the antibiotics Amoxicillin (AMX), Norfloxacin (NOR) and Azithromycin (AZI). The influence of the individual contributions of electrochemical oxidation (EO) and the UV-base processes on the hybrid process (PEO) was analysed. Results showed that AMX and NOR presented higher mineralization rate under direct photolysis than AZI due to the high absorption of UV radiation. For the EO processes, a low mineralization was found for all antibiotics, what was associated to a mass-transport limitation related to the low concentration of contaminants (200??g/L). Besides that, an increase in mineralization was found, when heterogeneous photocatalysis and EO are compared, due to the influence of UV radiation, which overcomes the mass-transport limitations. Although the UV-based processes control the reaction pathway that leads to mineralization, the best results to mineralize the antibiotics were achieved by PEO hybrid process. This can be explained by the synergistic effect of the processes that constitute them. A higher mineralization was achieved, which is an important and useful finding to avoid the discharge of microcontaminants in the environment.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据