4.8 Article

Omics Advances in Ecotoxicology

期刊

ENVIRONMENTAL SCIENCE & TECHNOLOGY
卷 52, 期 7, 页码 3842-3851

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.est.7b06494

关键词

-

资金

  1. National Natural Science Foundation of China [21677072]
  2. Major Science and Technology Program for Water Pollution Control and Treatment [2017ZX07602002]
  3. European Union SOLUTIONS project [603437]
  4. Fundamental Research Funds for the Central Universities

向作者/读者索取更多资源

Toxic substances in the environment generate adverse effects at all levels of biological organization from the molecular level to community and ecosystem. Given this complexity, it is not surprising that ecotoxicologists have struggled to address the full consequences of toxic substance release at ecosystem level, due to the limits of observational and experimental tools to reveal the changes in deep structure at different levels of organization. -Omics technologies, consisting of genomics and ecogenomics, have the power to reveal, in unprecedented detail, the cellular processes of an individual or biodiversity of a community in response to environmental change with high sample/observation throughput. This represents a historic opportunity to transform the way we study toxic substances in ecosystems, through direct linkage of ecological effects with the systems biology of organisms. Three recent examples of -omics advance in the assessment of toxic substances are explored here: (1) the use of functional genomics in the discovery of novel molecular mechanisms of toxicity of chemicals in the environment; (2) the development of laboratory pipelines of dose-dependent, reduced transcriptomics to support high throughput chemical testing at the biological pathway level; and (3) the use of eDNA metabarcoding approaches for assessing chemical effects on biological communities in mesocosm experiments and through direct observation in field monitoring. -Omics advances in ecotoxicological studies not only generate new knowledge regarding mechanisms of toxicity and environmental effect, improving the relevance and immediacy of laboratory toxicological assessment, but can provide a wholly new paradigm for ecotoxicology by linking ecological models to mechanism-based, systems biology approaches.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据