4.8 Article

Fresh and Oxidized Emissions from In-Use Transit Buses Running on Diesel, Biodiesel, and CNG

期刊

ENVIRONMENTAL SCIENCE & TECHNOLOGY
卷 52, 期 14, 页码 7720-7728

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.est.8b01394

关键词

-

资金

  1. Vinnova
  2. Sweden's Innovation Agency [2013-03058]
  3. Formas [214-2013-1430]
  4. Vinnova [2013-03058] Funding Source: Vinnova
  5. Swedish Research Council [2013-03058] Funding Source: Swedish Research Council

向作者/读者索取更多资源

The potential effect of changing to a nonfossil fuel vehicle fleet was investigated by measuring primary emissions (by extractive sampling of bus plumes) and secondary mass formation, using a Gothenburg Potential Aerosol Mass (Go:PAM) reactor, from 29 in-use transit buses. Regarding fresh emissions, diesel (DSL) buses without a diesel particulate filter (DPF) emitted the highest median mass of particles, whereas compressed natural gas (CNG) buses emitted the lowest ((EFPM)-E-Md 514 and 11 mg kg(fuel)(-1) respectively). Rapeseed methyl ester (RME) buses showed smaller (EFPM)-E-Md and particle sizes than DSL buses. DSL (no DPF) and hybrid-electric RME (RMEHEV) buses exhibited the highest particle numbers ((EFPN)-E-Md 12 X 10(14) # kg(fuel)(-1)). RMEHEv buses displayed a significant nucleation mode (D-p < 20 nm). EFPN of CNG buses spanned the highest to lowest values measured. Low (EFPN)-E-Md and (EFPM)-E-Md were observed for a DPF-equipped DSL bus. Secondary particle formation resulting from exhaust aging was generally important for all the buses (79% showed an average EFPM:AGED/EF(PM)(:FRE)s H ratio >10) and fuel types tested, suggesting an important nonfuel dependent source. The results suggest that the potential for forming secondary mass should be considered in future fuel shifts, since the environmental impact is different when only considering the primary emissions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据