4.8 Article

Evolution of the Complex Refractive Index of Secondary Organic Aerosols during Atmospheric Aging

期刊

ENVIRONMENTAL SCIENCE & TECHNOLOGY
卷 52, 期 6, 页码 3456-3465

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.est.7b05742

关键词

-

资金

  1. U.S. Israel Binational Science Foundation (BSF) grant [2016093]

向作者/读者索取更多资源

The wavelength-dependence of the complex refractive indices (RI) in the visible spectral range of secondary organic aerosols (SOA) are rarely studied, and the evolution of the RI with atmospheric aging is largely unknown. In this study, we applied a novel white light-broadband cavity enhanced spectroscopy to measure the changes in the RI (400650 nm) of beta-pinene and p-xylene SOA produced and aged in an oxidation flow reactor, simulating daytime aging under NOx-free conditions. It was found that these SOA are not absorbing in the visible range, and that the real part of the RI, n, shows a slight spectral dependence in the visible range. With increased OH exposure, n first increased and then decreased, possibly due to an increase in aerosol density and chemical mean polarizability for SOA produced at low OH exposures, and a decrease in chemical mean polarizability for SOA produced at high OH exposures, respectively. A simple radiative forcing calculation suggests that atmospheric aging can introduce more than 40% uncertainty due to the changes in the RI for aged SOA.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据