4.8 Article

Linking Thermodynamics to Pollutant Reduction Kinetics by Fe2+ Bound to Iron Oxides

期刊

ENVIRONMENTAL SCIENCE & TECHNOLOGY
卷 52, 期 10, 页码 5600-5609

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.est.8b00481

关键词

-

资金

  1. U.S. National Science Foundation [EAR-1451593]
  2. Swiss National Science Foundation [200021_149283]

向作者/读者索取更多资源

Numerous studies have reported that pollutant reduction rates by ferrous iron (Fe2+) are substantially enhanced in the presence of an iron (oxyhydr)oxide mineral. Developing a thermodynamic framework to explain this phenomenon has been historically difficult due to challenges in quantifying reduction potential (E-H) values for oxide-bound Fe2+ species. Recently, our group demonstrated that E-H values for hematite- and goethitebound Fe(2+)ested if calculated E-H values for oxide-bound Fe2+ could be used to develop a free energy relationship capable of describing variations in reduction rate constants of substituted nitrobenzenes, a class of model pollutants that contain reducible aromatic nitro groups, using data collected here and compiled from the literature. All the data could be described by a single linear relationship between the logarithms of the surface-area normalized rate constant (k(sA)) values and E-H and H-p values [log(k(sA)) = -E-H/0.059 V pH + 3.42]. This framework provides mechanistic insights into how the thermodynamic favorability of electron transfer from oxide-bound Fe2+ relates to redox reaction kinetics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据