4.7 Article

MISCIBILITY CALCULATIONS FOR WATER AND HYDROGEN IN GIANT PLANETS

期刊

ASTROPHYSICAL JOURNAL
卷 806, 期 2, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/0004-637X/806/2/228

关键词

equation of state; planets and satellites: gaseous planets; planets and satellites: individual (Jupiter, Saturn, Uranus, Neptune)

资金

  1. NASA
  2. NSF
  3. Direct For Mathematical & Physical Scien
  4. Division Of Astronomical Sciences [1412646] Funding Source: National Science Foundation

向作者/读者索取更多资源

We present results from ab initio simulations of liquid water-hydrogen mixtures in the range from 2 to 70 GPa and from 1000 to 6000 K, covering conditions in the interiors of ice giant planets and parts of the outer envelope of gas giant planets. In addition to computing the pressure and the internal energy, we derive the Gibbs free energy by performing a thermodynamic integration. For all conditions under consideration, our simulations predict hydrogen and water to mix in all proportions. The thermodynamic behavior of the mixture can be well described with an ideal mixing approximation. We suggest that a substantial fraction of water and hydrogen in giant planets may occur in homogeneously mixed form rather than in separate layers. The extent. of mixing depends on the planet's interior dynamics and its conditions of formation, in particular on how much hydrogen was present when icy planetesimals were delivered. Based on our results, we do not predict water-hydrogen mixtures to phase separate during any stage of the evolution of giant planets. We also show that the hydrogen content of an exoplanet is much higher if the mixed interior is assumed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据