4.8 Article

Identification and Quantification of 4-Nitrocatechol Formed from OH and NO3 Radical-Initiated Reactions of Catechol in Air in the Presence of NOx: Implications for Secondary Organic Aerosol Formation from Biomass Burning

期刊

ENVIRONMENTAL SCIENCE & TECHNOLOGY
卷 52, 期 4, 页码 1981-1989

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.est.7b05864

关键词

-

资金

  1. Department of Energy, Office of Biological and Environmental Sciences [DE-SC0012043]
  2. National Science Foundation [AGS-1420007]

向作者/读者索取更多资源

Catechol (1,2-benzenediol) is emitted from biomass burning and produced from a reaction of phenol with OH radicals. It has been suggested as an important secondary organic aerosol (SOA) precursor, but the mechanisms of gas-phase oxidation and SOA formation have not been investigated in detail. In this study, catechol was reacted with OH and NO3 radicals in the presence of NOx in an environmental chamber to simulate daytime and nighttime chemistry. These reactions produced SOA with exceptionally high mass yields of 1.34 +/- 0.20 and 1.50 +/- 0.20, respectively, reflecting the low volatility and high density of reaction products. The dominant SOA product, 4-nitrocatechol, for which an authentic standard is available, was identified through thermal desorption particle beam mass spectrometry and Fourier transform infrared spectroscopy and was quantified in filter samples by liquid chromatography using UV detection. Molar yields of 4-nitrocatechol were 0.30 +/- 0.03 and 0.91 +/- 0.06 for reactions with OH and NO3 radicals, and thermal desorption measurements of volatility indicate that it is semivolatile at typical atmospheric aerosol loadings, consistent with field studies that have observed it in aerosol particles. Formation of 4-nitrocatechol is initiated by abstraction of a phenolic H atom by an OH or NO3 radical to form a beta-hydroxyphenoxy/o-semiquinone radical, which then reacts with NO2 to form the final product.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据