4.7 Article

A method for separation of heavy metal sources in urban groundwater using multiple lines of evidence

期刊

ENVIRONMENTAL POLLUTION
卷 241, 期 -, 页码 787-799

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.envpol.2018.06.004

关键词

Heavy metals; Source separation; Groundwater; Coastal aquifer; Urban re-development

资金

  1. Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE) - Australian Government's Cooperative Research Centres Programme [2.3.01]
  2. Enqip

向作者/读者索取更多资源

Determining sources of heavy metals in soils, sediments and groundwater is important for understanding their fate and transport and mitigating human and environmental exposures. Artificially imported fill, natural sediments and groundwater from 240 ha of reclaimed land at Fishermans Bend in Australia, were analysed for heavy metals and other parameters to determine the relative contributions from different possible sources. Fishermans Bend is Australia's largest urban re-development project, however, complicated land-use history, geology, and multiple contamination sources pose challenges to successful re-development. We developed a method for heavy metal source separation in groundwater using statistical categorisation of the data, analysis of soil leaching values and fill/sediment XRF profiling. The method identified two major sources of heavy metals in groundwater: 1. Point sources from local or up-gradient groundwater contaminated by industrial activities and/or legacy landfills; and 2. contaminated fill, where leaching of Cu, Mn, Pb and Zn was observed. Across the precinct, metals were most commonly sourced from a combination of these sources; however, eight locations indicated at least one metal sourced solely from fill leaching, and 23 locations indicated at least one metal sourced solely from impacted groundwater. Concentrations of heavy metals in groundwater ranged from 0.0001 to 0.003 mg/L (Cd), 0.001-0.1 mg/L (Cr), 0.001-0.2 mg/L (Cu), 0.001-0.5 mg/L (Ni), 0.001-0.01 mg/L (Pb), and 0.005-1.2 mg/L (Zn). Our method can determine the likely contribution of different metal sources to groundwater, helping inform more detailed contamination assessments and precinct-wide management and remediation strategies. (C) 2018 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据