4.7 Article

Acidic leaching of potentially toxic metals cadmium, cobalt, chromium, copper, nickel, lead, and zinc from two Zn smelting slag materials incubated in an acidic soil

期刊

ENVIRONMENTAL POLLUTION
卷 238, 期 -, 页码 359-368

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.envpol.2018.03.022

关键词

Soil amendment; Simulated acid deposition; Leaching index; Chemical species; Mineral saturation

资金

  1. National Science Foundation of China [40473049, 41273129]
  2. Open Fund of the State Key Laboratory of Environmental Geochemistry [SKLEG2017901]

向作者/读者索取更多资源

A column leaching study, coupled with acid deposition simulation, was conducted to investigate the leaching of potentially toxic metals (PTM) from zinc smelting slag materials (SSM) after being incubated in an acid Alfisol for 120 days at room temperature. Two SSMs (SSM-A: acidic, 10 yrs exposure with moderate high PTM concentrations versus SSM-B: alkaline, 2 yrs exposure with extremely high PTM concentrations), were used for the incubation at 0.5, 1, 2.5, 5 wt% amendment ratios in triplicate. Five leaching events were conducted at day 1, 3, 7,14, and 28, and the leaching of PTMs mainly occurred in the first three leaching events, with the highest PTM concentrations in leachate measured from 5 wt% SSM amendments. After leaching, 2.5, 12, 5.5, 14, 11, and 9 wt% of M3 extractable Pb, Zn, Cd, Co, Cr, and Ni could be released from 5 wt% SSM-A amended soils, being respectively 25, 12, 4, 2, 2, and 2 times more than those from 5 wt% SSM-B amended soils. In the leachates, the concentrations of PTMs were mostly affected by leachant pH and were closely correlated to the concentrations of Fe, Al, Ca, Mg and P with Cd, Pb, and Zn showing the most environmental concern. Visual MINTEQ 3.1 modeling suggested metallic ions and sulfate forms as the common chemical species of PTMs in the leachates; whereas, organic bound species showed importance for Cd, Pb, Cu, and Ni, and CdCl+ was observed for Cd. Aluminum hydroxy, phosphate, and sulfate minerals prevailed as the saturated minerals, followed by chloropyromorphite (Pb-5(PO4)(3)Cl) and plumbogummite (PbAl3(PO4)(2)(OH)(5)center dot H2O) in the leachates. This study suggested that incubation of SSMs in acidic soil for a long term can enhance the release of PTMs as the forms of metallic ions and sulfate when subjected to acid deposition leaching. (C) 2018 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据