4.7 Article

Aqueous and organic extract of PM2.5 collected in different seasons and cities of Japan differently affect respiratory and immune systems

期刊

ENVIRONMENTAL POLLUTION
卷 235, 期 -, 页码 223-234

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.envpol.2017.12.040

关键词

-

向作者/读者索取更多资源

Particulate matter with diameters <2.5 mu m (i.e., PM2.5) has multiple natural and anthropological sources. The association between PM2.5 and the exacerbation of respiratory allergy and asthma has been well studied, but the components of PM2.5 that are responsible for allergies have not yet been determined. Here, we elucidated the effects of aqueous and organic extract of PM2.5 collected during four seasons in November 2014 December 2015 in two cities (Kawasaki, an industrial area and Fukuoka, an urban area affected by transboundary pollution matter) of Japan on respiratory health. Ambient PM2.5 was collected by high-volume air samplers and extracted into water soluble and lipid soluble components. Human airway epithelial cells, murine bone marrow-derived antigen-presenting cells (APC) and splenocytes were exposed to PM2.5 extracts. We measured the cell viability and release of interleukin (IL)-6 and IL-8 from airway epithelial cells, the DEC205 and CD86 expressions on APCs and cell proliferation, and TCR and CD19 expression on splenocytes. The water-soluble or aqueous extracts, especially those from Kawasaki in fall, had a greater cytotoxic effect than the lipid-soluble or organic extracts in airway epithelial cells, but they caused almost no pro-inflammatory response. Extract of fall, especially the aqueous extract from Fukuoka, increased the DEC205 and CD86 expressions on APC. Moreover, aqueous extracts of fall, summer, and spring from Fukuoka significantly increased proliferation of splenocytes. Organic extract of spring and summer from Kawasaki significantly elevated the TCR expression, and organic extract of summer from Kawasaki decreased the CD19 expression. These results suggest that PM2.5 extract samples are responsible for cytotoxicity in airway epithelial cells and for activating APCs and T-cells, which can contribute to the exacerbation of respiratory diseases such as asthma. These effects can differ by PM2.5 components, collection areas and seasons. (C) 2017 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据