4.7 Article

Analysis of glyphosate degradation in a soil microcosm

期刊

ENVIRONMENTAL POLLUTION
卷 233, 期 -, 页码 201-207

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.envpol.2017.10.017

关键词

Glyphosate; AminoMethylPhosphonic acid; Herbicide; Biodegradation; Birnessite

资金

  1. Sydney Research Excellence Initiative (SREI) of The University of Sydney

向作者/读者索取更多资源

Glyphosate (GLP) herbicide leaching into soil can undergo abiotic degradation and two enzymatic oxidative or hydrolytic reactions in both aerobic and anaerobic conditions; biotic oxidation produces aminomethylphosphonic acid (AMPA). Both GLP and AMPA are phytotoxic. A comprehensive GLP degradation reaction network was developed from the literature to account for the above pathways, and fifteen experimental data sets were used to determine the corresponding Michaelis-Menten-Monod (MMM) kinetic parameters. Various sensitivity analyses were designed to assess GLP and AMPA degradation potential against O-2 (aq) and carbon (C) availability, pH, and birnessite mineral content, and showed that bacteria oxidized or hydrolyzed up to 98% of GLP and only 9% of AMPA. Lack of a C source limited the GLP cometabolic hydrolytic 'pathways, which produces non-toxic byproducts and promotes AMPA biodegradation. Low bacterial activity in O-2 (aq)-limited conditions or non-neutral pH resulted in GLP accumulation. Birnessite mineral catalyzed fast GLP and AMPA chemodegradation reaching alone efficiencies of 79% and 88%, respectively, regardless of the other variables and produced non-toxic byproducts. Overall, O-2 (aq) and birnessite availability played the major roles in determining the partitioning of GLP and its byproducts mass fluxes across the reaction network, while birnessite, C availability, and pH affected GLP and AMPA biodegradation effectiveness. (C) 2017 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据