4.6 Article

Ecophysiology and lipid dynamics of a eukaryotic mangrove decomposer

期刊

ENVIRONMENTAL MICROBIOLOGY
卷 20, 期 8, 页码 3057-3068

出版社

WILEY
DOI: 10.1111/1462-2920.14346

关键词

-

资金

  1. French National Research Agency [ANR-10-LABEX-04, ANR-11-BTBR-0008]
  2. PhD Flagship program of CEA high commissioner
  3. Fermentalg-CEA partnership
  4. Trans'Alg Bpifrance project

向作者/读者索取更多资源

Aurantiochytrium limacinum is an osmo-heterotrophic Stramenopile and a pioneering mangrove decomposer which is taxonomically assigned to the family of Thraustochytriaceae (class: Labyrinthulomycetes). The life cycle of A. limacinum involves different cell types including mono- and multi-nucleated cells as well as flagellated zoospores which colonize new fallen leaves. The ecological relevance of thraustochytrids is underestimated and eclipsed by their biotechnological importance, due to their ability to accumulate large amount of lipids, mainly triacylglycerols (TAGs). In this study, we aimed to understand the ecophysiological parameters that trigger zoospore production and the interplay between the life cycle of A. limacinum and its lipid metabolism. When grown in a rich medium, cells accumulated large amounts of TAGs at the end of their growth period, but no zoospores were produced. In poor media such as artificial sea water, zoospores were produced in massive quantities. In the absence of organic carbon, the zoospores remained swimming for at least 6 days, consuming their TAGs in the process. Addition of glucose rapidly triggered the maturation of the zoospores. On the basis of these data, we propose a life cycle for A. limacinum integrating the potential perturbations/changes in the environment surrounding a mangrove leaf that could lead to the production of zoospores and colonization of new areas.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据