4.7 Article

Ultrafine and Fine Particle Number and Surface Area Concentrations and Daily Cause-Specific Mortality in the Ruhr Area, Germany, 2009-2014

期刊

ENVIRONMENTAL HEALTH PERSPECTIVES
卷 126, 期 2, 页码 -

出版社

US DEPT HEALTH HUMAN SCIENCES PUBLIC HEALTH SCIENCE
DOI: 10.1289/EHP2054

关键词

-

向作者/读者索取更多资源

BACKGROUND: Although epidemiologic studies have shown associations between particle mass and daily mortality, evidence on other particle metrics is weak. OBJECTIVES: We investigated associations of size-specific particle number concentration (PNC) and lung-deposited particle surface area concentration (PSC) with cause-specific daily mortality in contrast to PM10. METHODS: We used time-series data (March 2009-December 2014) on daily natural, cardiovascular, and respiratory mortality (NM, CVM, RM) of three adjacent cities in the Ruhr Area, Germany. Size-specific PNC (electric mobility diameter of 13.3-750 nm), PSC, and PM10 were measured at an urban background monitoring site. In single- and multipollutant Poisson regression models, we estimated percentage change (95% confidence interval) [% (95% CI)] in mortality per interquartile range (IQR) in exposure at single-day (0-7) and aggregated lags (0-1, 2-3, 4-7), accounting for time trend, temperature, humidity, day of week, holidays, period of seasonal population decrease, and influenza. RESULTS: PNC100-750 and PSC were highly correlated and had similar immediate (lag0-1) and delayed (lag4-7) associations with NM and CVM, for example, 1.12% (95% CI: 0.09, 2.33) and 1.56% (95% CI: 0.22, 2.92) higher NM with IQR increases in PNC100-750 at lag0-1 and lag4-7, respectfully, which were slightly stronger then associations with IQR increases in PM10. Positive associations between PNC and NM were strongest for accumulation mode particles (PNC 100-500 nm), and for larger UFPs (PNC 50-100 nm). Associations between NM and PNC<100 changed little after adjustment for O-3 or PM10, but were more sensitive to adjustment for NO2. CONCLUSION: Size-specific PNC (50-500 nm) and lung-deposited PSC were associated with natural and cardiovascular mortality in the Ruhr Area. Although associations were similar to those estimated for an IQR increase in PM10, particle number size distributions can be linked to emission sources, and thus may be more informative for potential public health interventions. Moreover, PSC could be used as an alternative metric that integrates particle size distribution as well as deposition efficiency.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据