4.5 Article

Nonlinear modeling and finite element simulation of magnetoelectric coupling and residual stress in multiferroic composites

期刊

ACTA MECHANICA
卷 226, 期 8, 页码 2789-2806

出版社

SPRINGER WIEN
DOI: 10.1007/s00707-015-1336-0

关键词

-

向作者/读者索取更多资源

The coupling of magnetic and electric fields due to the constitutive behavior of a material is commonly denoted as magnetoelectric (ME) effect. The latter is only observed in a few crystal classes exhibiting a very weak coupling which can hardly be exploited for technical applications. Much larger coupling coefficients are obtained in composite materials, where ferroelectric and ferromagnetic constituents are embedded in a matrix. The ME effect is then induced by the strain of the matrix converting electrical and magnetic energies based on the ferroelectric and magnetostrictive effects. In this paper, the theoretical background of linear and nonlinear constitutive multifield behavior as well as the finite element implementation is presented. A nonlinear material model describing the magnetoferroelectric behavior is presented. On this basis, polarization switching in the ferroelectric phase is simulated and the influence on stress distribution and ME coupling is analyzed. Numerical homogenization is performed, in order to supply ME-coupling constants, which are compared to experimental results for both the perfect poling state of a linear calculation and the more realistic case of nonlinear magnetoferroelectricity. The numerical tools supply useful means for the optimization of multiferroic composites with respect to strength and functionality.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据