4.6 Review

Enhancing Metastability by Dissipation and Driving in an Asymmetric Bistable Quantum System

期刊

ENTROPY
卷 20, 期 4, 页码 -

出版社

MDPI
DOI: 10.3390/e20040226

关键词

Caldeira-Leggett model; metastable potential; discrete variable representation; noise enhanced stability; resonant activation; tunneling; quantum Zeno dynamics; quantum systems with finite Hilbert space; functional analytical methods; open systems; quantum statistical methods

资金

  1. Government of the Russian Federation [14.Y26.31.0021]
  2. MIUR

向作者/读者索取更多资源

The stabilizing effect of quantum fluctuations on the escape process and the relaxation dynamics from a quantum metastable state are investigated. Specifically, the quantum dynamics of a multilevel bistable system coupled to a bosonic Ohmic thermal bath in strong dissipation regime is analyzed. The study is performed by a non-perturbative method based on the real-time path integral approach of the Feynman-Vernon influence functional. We consider a strongly asymmetric double well potential with and without a monochromatic external driving, and with an out-of-equilibrium initial condition. In the absence of driving we observe a nonmonotonic behavior of the escape time from the metastable region, as a function both of the system-bath coupling coefficient and the temperature. This indicates a stabilizing effect of the quantum fluctuations. In the presence of driving our findings indicate that, as the coupling coefficient gamma increases, the escape time, initially controlled by the external driving, shows resonant peaks and dips, becoming frequency-independent for higher gamma values. Moreover, the escape time from the metastable state displays a nonmonotonic behavior as a function of the temperature, the frequency of the driving, and the thermal-bath coupling, which indicates the presence of a quantum noise enhanced stability phenomenon. Finally, we investigate the role of different spectral densities, both in sub-Ohmic and super-Ohmic dissipation regime and for different cutoff frequencies, on the relaxation dynamics from the quantum metastable state. The results obtained indicate that, in the crossover dynamical regime characterized by damped intrawell oscillations and incoherent tunneling, the spectral properties of the thermal bath influence non-trivially the short time behavior and the time scales of the relaxation dynamics from the metastable state.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据