4.7 Article

Phase change materials of paraffin in h-BN porous scaffolds with enhanced thermal conductivity and form stability

期刊

ENERGY AND BUILDINGS
卷 158, 期 -, 页码 1184-1188

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.enbuild.2017.11.033

关键词

Boron nitride; Paraffin; Phase change materials; Scaffold; Thermal conductivity

资金

  1. NSFC [51522308, 21421061]
  2. MOST of China [2013CB933000]

向作者/读者索取更多资源

Low thermal conductivity and leakage after melting are the two main issues limited the application of phase change materials (PCMs). Here, to improve the thermal conductivity and hamper the leakage after melting, PCMs were fabricated by infiltrating paraffin into h-BN porous scaffolds with continuous thermal conductive paths. The latent heat of fusion of the resultant PCMs containing 18 wt% h-BN was 165.4 +/- 1.7 J/g, and the thermal conductivity was as high as 0.85 W/mK. The thermal conductivity increased approximately 600% compared to the pure paraffin, and was over twice of the composites fabricated by conventional blending of paraffin and h-BN. The enhanced thermal conductivity obviously shortened the phase change process, indicating more efficient in energy storage and release. In addition, the h-BN scaffolds endowed the PCMs shape stability under molten state and prevented the leakage of molten paraffin. This approach to fabricate form-stable PCMs with high thermal conductivity may extend to other thermal management applications. (C) 2017 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据