4.7 Article

Hygro-thermal properties of silica aerogel blankets dried using microwave heating for building thermal insulation

期刊

ENERGY AND BUILDINGS
卷 158, 期 -, 页码 14-22

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.enbuild.2017.10.024

关键词

Aerogel blankets; Thermal insulation materials; Structural characterization; Thermal properties; Hydric properties

资金

  1. HOMESKIN European Union H2020 project [636709]
  2. H2020 Societal Challenges Programme [636709] Funding Source: H2020 Societal Challenges Programme

向作者/读者索取更多资源

Silica aerogels are highly porous and open-cell materials made of amorphous silica nanoparticles, interconnected in a 3D random network. Silica aerogel-based materials have a great potential as thermal insulation in building thanks to their very low thermal conductivity. However, pure silica aerogels are fragile with low mechanical moduli. Making aerogel composite materials by combining fibers with a pre-gel mixture of a gel precursor or by impregnating a fiber network by such a mixture seems to be a promising way to enhance the mechanical properties of such materials. After drying, the resulting composite is called aerogel blanket. The aerogel blanket is mechanically strengthened, flexible and still has a very low thermal conductivity. Aerogel blankets are usually dried using supercritical process but it is considered as a main drawback for large scale industrialization. The present study uses an innovative micro wave drying. The purpose of this work is to analyze and characterize a handy, light, super-insulating aerogel blanket dried in ambient conditions and see if it could be suitable for building thermal insulation. Two types of blankets have been investigated: the first one with a glass fiber web and the second one with a PET (polyethylene terephthalate) fiber web. Hygro-thermal characterizations were done and show that the aerogel blankets have an excellent thermal conductivity (0.015 Wm(-1) K-1) and a hydrophobic behavior. The studied aerogel blankets obtained using a new ambient drying process show practically the same characteristics as their counterpart dried with a supercritical process and mark a step forward in the aerogel blanket industrialization. (C) 2017 Published by Elsevier B.V.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据