4.7 Article

Effect of Anionic Surfactant on Wettability of Shale and Its Implication on Gas Adsorption/Desorption Behavior

期刊

ENERGY & FUELS
卷 32, 期 2, 页码 1423-1432

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.energyfuels.7b03476

关键词

-

资金

  1. Shale Gas Research Group (SGRG) in UTP
  2. Shale PRF project [0153AB-A33]

向作者/读者索取更多资源

During the fracking process in shale, an interaction occurs between shale and fracking fluid that contains a cocktail of chemicals. One of the chemicals used in fracking fluid is often surfactant, which is generally used as a viscofier. However, surfactants also have the potential of significantly influencing the wettability and thus gas desorption-key factors affecting ultimate gas recovery from shale reservoirs. Even though a few studies discussed the ability of surfactants to alter wettability in shale, the implication of that change in adsorption/desorption behavior has never been experimentally investigated beyond hypothetical inferences. In this study, the influence of the wettability change by anionic surfactant on gas adsorption/desorption behavior in shale was investigated through a series of experiments. Baseline wettability readings of two shale samples were established by measuring the contact angles (BG-1 = 22.7 degrees, KH-1 = 35 degrees) between a drop of pure water placed on their polished surfaces, indicating that the affinity of pure water for the BG-1 surface was greater than that for KH-1. This difference can be attributed to the higher clay content and lower total organic carbon found in BG-1 as compared to KH-1. To investigate the impact of the interaction between shale and surfactants on wettability during the fracking process, we measured the contact angles again, this time with 1 wt % solution of internal olefin sulfate surfactant. The surfactant-induced wettability changes of the two shale samples were investigated by measuring the contact angles again (BG-1 = 3.5 degrees, KH-1 = 19.2 degrees) between a drop of surfactant solution and their polished surfaces. The effect of wettability changes on gas adsorption/desorption was then evaluated utilizing the United States bureau of mines' modified method. Experiments were conducted on the two shale samples in two ways: after pure water treatment, and after surfactant treatment. The results suggest that due to the wettability alteration of the two shale samples by IOS surfactant toward more water-wet during the treatment, the methane adsorption/desorption characteristics were influenced. In BG-1 sample, IOS solution dramatically changed its wettability to become completely water wet. Therefore, the volume of desorbed methane dropped by nearly 54%. A similar but less pronounced influence was found in the KH-1 sample, where its desorbed methane dropped by 10% because of wettability alteration toward more water-wet. These reductions in the amount of desorbed gas suggest that prior to selecting a surfactant for addition to fracking fluid, its effect on wettability and gas desorption should be investigated to optimize shale gas recovery potential.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据