4.8 Article

Aqueous vs. nonaqueous Zn-ion batteries: consequences of the desolvation penalty at the interface

期刊

ENERGY & ENVIRONMENTAL SCIENCE
卷 11, 期 4, 页码 881-892

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c8ee00378e

关键词

-

资金

  1. NSERC
  2. Canada Research Chair programs
  3. Joint Center for Energy Storage Research (JCESR), an Energy Innovation Hub - US Department of Energy (DOE), Office of Science, Basic Energy Sciences
  4. User project at The Molecular Foundry
  5. Lawrence Berkeley National Laboratory [DE-AC02-05CH11231]

向作者/读者索取更多资源

Zinc ion batteries using metallic zinc as the negative electrode have gained considerable interest for electrochemical energy storage, whose development is crucial for the adoption of renewable energy technologies, as zinc has a very high volumetric capacity (5845 mA h cm(-3)), is inexpensive and compatible with aqueous electrolytes. However, the divalent charge of zinc ions, which restricts the choice of host material due to hindered solid-state diffusion, can also pose a problem for interfacial charge transfer. Here, we report our findings on reversible intercalation of up to two Zn2+ ions in layered V3O7 center dot H2O. This material exhibits very high capacity and power (375 mA h g(-1) at a 1C rate, and 275 mA h g(-1) at an 8C rate) in an aqueous electrolyte compared to a very low capacity and slow rate capabilities in a nonaqueous medium. Operando XRD studies, together with impedance analysis, reveal solid solution behavior associated with Zn2+-ion diffusion within a water monolayer in the interlayer gap in both systems, but very sluggish interfacial charge transfer in the nonaqueous electrolyte. This points to desolvation at the interface as a major factor in dictating the kinetics. Temperature dependent impedance studies show high activation energies associated with the nonaqueous charge transfer process, identifying the origin of poor electrochemical performance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据