4.8 Article

Geophysical constraints on the reliability of solar and wind power in the United States

期刊

ENERGY & ENVIRONMENTAL SCIENCE
卷 11, 期 4, 页码 914-925

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c7ee03029k

关键词

-

资金

  1. Near Zero
  2. Fund for Innovative Climate and Energy Research (FICER)
  3. Gordon and Betty Moore Foundation
  4. NSF INFEWS [EAR 1639318]

向作者/读者索取更多资源

We analyze 36 years of global, hourly weather data (1980-2015) to quantify the covariability of solar and wind resources as a function of time and location, over multi-decadal time scales and up to continental length scales. Assuming minimal excess generation, lossless transmission, and no other generation sources, the analysis indicates that wind-heavy or solar-heavy U.S.-scale power generation portfolios could in principle provide similar to 80% of recent total annual U.S. electricity demand. However, to reliably meet 100% of total annual electricity demand, seasonal cycles and unpredictable weather events require several weeks' worth of energy storage and/or the installation of much more capacity of solar and wind power than is routinely necessary to meet peak demand. To obtain similar to 80% reliability, solar-heavy wind/solar generation mixes require sufficient energy storage to overcome the daily solar cycle, whereas wind-heavy wind/solar generation mixes require continental-scale transmission to exploit the geographic diversity of wind. Policy and planning aimed at providing a reliable electricity supply must therefore rigorously consider constraints associated with the geophysical variability of the solar and wind resourc-even over continental scales.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据