4.8 Article

A lung-inspired approach to scalable and robust fuel cell design

期刊

ENERGY & ENVIRONMENTAL SCIENCE
卷 11, 期 1, 页码 136-143

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c7ee02161e

关键词

-

资金

  1. EPSRC Frontier Engineering'' Award [EP/K038656/1]
  2. UCL Faculty of Engineering Sciences Dean's Scholarship
  3. EPSRC [EP/L014289/1, EP/K038656/1] Funding Source: UKRI
  4. Engineering and Physical Sciences Research Council [EP/L014289/1, EP/K038656/1] Funding Source: researchfish

向作者/读者索取更多资源

A lung-inspired approach is employed to overcome reactant homogeneity issues in polymer electrolyte fuel cells. The fractal geometry of the lung is used as the model to design flow-fields of different branching generations, resulting in uniform reactant distribution across the electrodes and minimum entropy production of the whole system. 3D printed, lung-inspired flow field based PEFCs with N = 4 generations outperform the conventional serpentine flow field designs at 50% and 75% RH, exhibiting a similar to 20% and similar to 30% increase in performance (at current densities higher than 0.8 A cm(-2)) and maximum power density, respectively. In terms of pressure drop, fractal flow-fields with N = 3 and 4 generations demonstrate similar to 75% and similar to 50% lower values than conventional serpentine flow-field design for all RH tested, reducing the power requirements for pressurization and recirculation of the reactants. The positive effect of uniform reactant distribution is pronounced under extended current-hold measurements, where lung-inspired flow field based PEFCs with N = 4 generations exhibit the lowest voltage decay (similar to 5 mV h(-1)). The enhanced fuel cell performance and low pressure drop values of fractal flow field design are preserved at large scale (25 cm(2)), in which the excessive pressure drop of a large-scale serpentine flow field renders its use prohibitive.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据