4.8 Article

Block copolymer derived 3-D interpenetrating multifunctional gyroidal nanohybrids for electrical energy storage

期刊

ENERGY & ENVIRONMENTAL SCIENCE
卷 11, 期 5, 页码 1261-1270

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c7ee03571c

关键词

-

向作者/读者索取更多资源

Electrical energy storage systems such as batteries would benefit enormously from integrating all device components in three-dimensional (3-D) architectures on the nanoscale to improve their power capability without negatively impacting the device-scale energy density. However, the lack of large scale synthesis methods of 3-D architectures with precise spatial control of multiple, functional energy materials at the nanoscale remains a key issue holding back the development of such intricate device designs. To achieve fully integrated, multi-material nano-3-D architectures, next-generation nanofabrication requires departure from the traditional top-down patterning methods. Here, we present an approach to such systems based on the bottom-up synthesis of co-continuous nanohybrids with all necessary functional battery components rationally integrated in a triblock terpolymer derived core-shell double gyroid architecture. In our design three-dimensional periodically ordered, functional anode and cathode nanonetworks are separated by an ultrathin electrolyte phase within a single 3-D nanostructure. All materials are less than 20 nm in their layer dimensions, co-continuous and interpenetrating in 3-D, and extended throughout a macroscopic monolith. The electrochemical analysis of our solid-state nano-3-D Li-ion/sulfur system demonstrated battery-like characteristics with stable open circuit voltage, reversible discharge voltage and capacity, and orders of magnitude decreases in footprint area compared to two-dimensional thin layer designs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据