4.8 Article

Calcium cobaltate: a phase-change catalyst for stable hydrogen production from bio-glycerol

期刊

ENERGY & ENVIRONMENTAL SCIENCE
卷 11, 期 3, 页码 660-668

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c7ee03301j

关键词

-

资金

  1. Guangdong Natural Science Foundation [2017A030312005]
  2. Pearl River Nova Program of Guangzhou City [2011J2200062]
  3. Natural Science Foundation of China [20176094]

向作者/读者索取更多资源

The sorption enhanced steam reforming (SESR) technology has the potential to produce high purity hydrogen by Le Chatelier's principle. However, its practical applicability is limited by sorbent sintering and deactivation at high reaction/decarbonation temperatures. Herein, we propose a novel strategy to enhance the stability of the SESR of glycerol (SESRG), in which misfit layered materials, i.e. calcium cobaltates (CCO), were used as a dual-functional material combining CO2 absorption and catalytic reforming. Differing from the conventional approach of enhancing the robustness of catalysts/sorbents, we exploited the reversible phase change of CCO: Ca3Co4O9 Co + CaO, during the decarbonation and reaction steps respectively. By doing so, the sintering of the CaO sorbent and the Co catalyst could be suppressed because they were homogenized into CCO on an atomic level in every decarbonation stage. The CCO catalyst displayed a very stable performance for producing high purity H-2 through SESRG for up to 120 reaction-decarbonation cycles, without noticeable changes in H-2 production and CO2 absorption capacity. In situ XRD and microscopy studies demonstrated the reversible phase transition and the accompanied formation of hierarchical CCO micro-structures that facilitated the catalytic reforming and CO2 absorption, benefited from the complex phase equilibria among different CCO compounds. The results in this study shed light on a new paradigm for the design of materials working at high temperatures thus suffering from serious sintering.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据