4.7 Article

Potential of three variant machine-learning models for forecasting district level medium-term and long-term energy demand in smart grid environment

期刊

ENERGY
卷 160, 期 -, 页码 1008-1020

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.energy.2018.07.084

关键词

ANN-NAEM1; MLRM; AdaBoost; Energy prediction; Machine learning models

资金

  1. National Natural Science Foundation of China [51576074, 51328602]

向作者/读者索取更多资源

Medium-term and long-term energy prediction is essential for the planning and operations of the smart grid eco-system. The prediction of next year and next month energy demand of grid station, independent power producers, commercial, domestic and industrial consumers are allowed administrators to optimize and plan their resources. To address the forecasting problems, the basic intention of this study is to propose an accurate and precise medium and long-term district level energy prediction models employing the machine learning based models which are: 1) artificial neural network with nonlinear autoregressive exogenous multivariable inputs model; 2) multivariate linear regression model; and 3) adaptive boosting model. Based on environmental and aggregated energy consumption data as the model's input and output, the load prediction interval is further classified into three main parts, 1-month ahead forecasting, seasonally ahead forecasting and 1-year ahead forecasting. Feature extraction, data transformation and outlier detection are performed through different data tests. The prediction results intimate that the intended models cannot only increase the forecasting accuracy contrasted with previous forecasting models but also produce adequate forecasting intervals in the smart grid environment. Additionally, these techniques describe an essential step-forward, consolidating the spatiotemporal use of energy inconstancies and variations of district level and strong forecasting capabilities of energy usage requirement in future perceptive. (C) 2018 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据