4.7 Article

Tech-economic assessment of second-generation CCS: Chemical looping combustion

期刊

ENERGY
卷 144, 期 -, 页码 915-927

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.energy.2017.12.047

关键词

Chemical looping combustion; Power generation; Combined cycle; Economic assessment

资金

  1. Double First-Class university project special fund of Southwest Petroleum University [CXJJ201706]

向作者/读者索取更多资源

Chemical looping combustion (CLC) is regarded as the most promising technology for CO2 capture to mitigate greenhouse gas effect. In this work, a technical and economic performance of CH4-feed CLC power plant by means of utilizing promising nickel-, copper-, and ilmenite-based oxygen carriers is studied. Nickel-based CLC power plant has the highest net power efficiency of 50.14%, followed by 48.02% for ilmenite-based case and 45.59% for copper-based case. By contrast nickel-based case has a specific CO2 emission of 1.44 kg/MW h, which is dramatically lower than the referenced NGCC with CCS system (40.10 kg/MW h). The economic analyse reveal nickel-based case is most economic-benefits due to the lowest cost of electricity (COE) of 71.66(sic)/MW h, approximately 0.32 (sic)/MW h and 13.06(sic)/MW h COE reduction benefits have been increased in comparison with ilmenite-based and copper-based case, respectively. The natural gas price has an important influence on COE, as approximately 49.73%, 48.60% and 56.30% of COE enhancement is expected with the natural gas price ranging in 4-8(sic)/GJ for nickel-based, copper-based, and ilmenite-based case, respectively. Finally a comparison between NGCC and CLC-related power system in terms of economic performance further demonstrates the feasibility of the latter system. (C) 2017 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据