4.7 Article

Thermo-element geometry optimization for high thermoelectric efficiency

期刊

ENERGY
卷 147, 期 -, 页码 672-680

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.energy.2018.01.104

关键词

Compatibility factor; Efficiency; Thermoelectric generator; Selective laser melting

资金

  1. US National Science Foundation [1508862, 1529842]
  2. Directorate For Engineering
  3. Div Of Electrical, Commun & Cyber Sys [1508862] Funding Source: National Science Foundation
  4. Div Of Civil, Mechanical, & Manufact Inn
  5. Directorate For Engineering [1529842] Funding Source: National Science Foundation

向作者/读者索取更多资源

The figure of merit of thermoelectric materials is temperature dependent, and thus the local compatibility factor changes significantly along the thermo-element length. A local optimization method to maximize the efficiency of a function graded thermoelectric generator was proposed and discussed in this paper. By adjusting the cross-sectional area and segment's thickness, the reduced current equaled the compatibility factor of the material at every local thermo-element layer. This method can use the full potential of existing materials by maximizing the efficiency at every local thermo-element segment. For such a TEG working in a temperature range of 300-1100 K, the efficiencies of P-type segmented Bi0.5Sb1.5Te3/BiSbTe/-PbTe/FeNbSb thermo-element and a N-type segmented Bi2Te2.79Se0.21/Bi2Te2.9Se1.1/SnSe/SiGe thermo-element were 25.70% and 21.73%, respectively, much higher than the conventional segmented thermo-elements. The overall efficiency of the device was more than 23.72%, making it a promising technology to harvest energy from medium and high-temperature industrial components. The optimized TEG can be fabricated by SLS/SLM technology. Published by Elsevier Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据