4.7 Article

Multi-objective component sizing for a battery-supercapacitor power supply considering the use of a power converter

期刊

ENERGY
卷 142, 期 -, 页码 436-446

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.energy.2017.10.051

关键词

Li-ion batteries; Supercapacitors; DC-DC converters; Load leveling; Multi-objective optimization

资金

  1. Automotive Australia Cooperative Research Centre, Commonwealth of Australia [4-108]

向作者/读者索取更多资源

Owing to a lack of power density of conventional batteries, the onboard energy storage systems of an electric vehicle has to be oversized to compensate worst-case load condition, which is sub-optimal as it induces a heavy penalty on overall system weight and cost. One solution to overcome this limitation is to hybridize it with supercapacitors in order to boost its power performance via a power converter. This paper presents a multi-objective optimization problem over the parameters of such hybrid energy storage systems, with the aims to solve two conflicting objectives cost and total stored energy in the hybrid energy storage system, under a set of pre-defined design constraints. An algorithm is first developed to find all feasible solutions to the problem. Two popular design examples are then tested differentiating Lithium Iron Phosphate based batteries from Lithium Manganese Oxide/Nickel-Cobalt-Manganese based batteries. A Pareto frontier is recreated for each example and an xi-constraint method is finally adopted to choose the best member for comparison. This is so far, according to the authors' knowledge, the first reported multi-objective optimal sizing method for an active hybrid energy storage system considering the effect of the power converter to gain a clearer understanding of its impact over various design choices. (C) 2017 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据