4.5 Article

Numerical Simulation of Water Transport in a Proton Exchange Membrane Fuel Cell Flow Channel

期刊

ENERGIES
卷 11, 期 7, 页码 -

出版社

MDPI
DOI: 10.3390/en11071770

关键词

two-phase; volume of fluid (VOF); water transport; fuel cell; phase transition

资金

  1. National Natural Science Foundation of China [51736004, 51776079]

向作者/读者索取更多资源

Water management of proton exchange membrane fuel cells (PEMFCs) is crucial to maintain high performance and stable operation. The flow channel is an indispensable part of PEMFCs, which allows the reactant gases to flow into the system, and the liquid water to be removed from the fuel cells. A transient 3D model based on volume of fluid methodology is used to study the dynamic characteristics of gas-liquid two-phase flow in a PEMFC flow channel. The structure of the flow channel, the wettability of channel surfaces, the air inlet velocity, the dimensions of the water droplets, and the effect of phase transition are considered to obtain the optimal solution. The results show that the water droplet transport process is seriously affected by the wettability of the channel surfaces. A modified surface design with varied static surface contact angle could perform the detachment without external force with an appropriate initial velocity. Besides, phase transitions could seriously influence the form and the distribution of water existing in the channel.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据