4.5 Article

Investigation of Discharge Coefficients for Single Element Lean Direct Injection Modules

期刊

ENERGIES
卷 11, 期 6, 页码 -

出版社

MDPI
DOI: 10.3390/en11061603

关键词

LDI module; discharge coefficient; swirling air; convergent outlet

向作者/读者索取更多资源

Lean direct injection (LDI) combustion has a high potential as a low pollution combustion method for gas turbines. The present research aims to further investigate the discharge coefficient of an LDI module, axial swirler and convergent outlet under non-reaction and reaction conditions by theoretical, numerical and experimental methods. The functional relationship between the discharge coefficient of the LDI module, axial swirler and convergent outlet was established, and the effect of swirl angle (30 degrees, 32 degrees, 34 degrees, 36 degrees, 38 degrees, 40 degrees) and vane number (11, 12, 13, 14, 15, 16) on discharge coefficient was studied, and finally the differences in effective flow area of LDI combustor under different inlet conditions were analyzed. The results indicate that the flow separation on the suction side increases as the swirl angle increases, which leads to a decrease of the discharge coefficient of the axial swirler, however the discharge coefficient of the convergent outlet remains unchanged first and then decreases. As the vane number increases, the flow separation on the suction side decreases and the flow friction loss increases, so that the discharge coefficient of the axial swirler and convergent outlet will first increase with the increase of vane number and then decrease with further increases. The effective flow area of combustor changes as the conditions change, but it is approximately equal under high power conditions and normal temperature and pressure conditions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据