4.5 Article

An Efficient Demand Side Management System with a New Optimized Home Energy Management Controller in Smart Grid

期刊

ENERGIES
卷 11, 期 1, 页码 -

出版社

MDPI
DOI: 10.3390/en11010190

关键词

smart grid; demand side management; embedded systems; home energy management system; real time electricity pricing

资金

  1. Deanship of Scientific Research at King Saud University [RG-1438-034]

向作者/读者索取更多资源

The traditional power grid is inadequate to overcome modern day challenges. As the modern era demands the traditional power grid to be more reliable, resilient, and cost-effective, the concept of smart grid evolves and various methods have been developed to overcome these demands which make the smart grid superior over the traditional power grid. One of the essential components of the smart grid, home energy management system (HEMS) enhances the energy efficiency of electricity infrastructure in a residential area. In this aspect, we propose an efficient home energy management controller (EHEMC) based on genetic harmony search algorithm (GHSA) to reduce electricity expense, peak to average ratio (PAR), and maximize user comfort. We consider EHEMC for a single home and multiple homes with real-time electricity pricing (RTEP) and critical peak pricing (CPP) tariffs. In particular, for multiple homes, we classify modes of operation for the appliances according to their energy consumption with varying operation time slots. The constrained optimization problem is solved using heuristic algorithms: wind-driven optimization (WDO), harmony search algorithm (HSA), genetic algorithm (GA), and proposed algorithm GHSA. The proposed algorithm GHSA shows higher search efficiency and dynamic capability to attain optimal solutions as compared to existing algorithms. Simulation results also show that the proposed algorithm GHSA outperforms the existing algorithms in terms of reduction in electricity cost, PAR, and maximize user comfort.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据