4.5 Article

Improved Genetic Algorithm-Based Unit Commitment Considering Uncertainty Integration Method

期刊

ENERGIES
卷 11, 期 6, 页码 -

出版社

MDPI
DOI: 10.3390/en11061387

关键词

uncertainty integration method; unit commitment; scenario integration technique; improved genetic algorithm; operating cost

资金

  1. Basic Science Research Program through National Research Foundation of Korea (NRF) - Ministry of Education [2017R1D1A1B03029308]

向作者/读者索取更多资源

In light of the dissemination of renewable energy connected to the power grid, it has become necessary to consider the uncertainty in the generation of renewable energy as a unit commitment (UC) problem. A methodology for solving the UC problem is presented by considering various uncertainties, which are assumed to have a normal distribution, by using a Monte Carlo simulation. Based on the constructed scenarios for load, wind, solar, and generator outages, a combination of scenarios is found that meets the reserve requirement to secure the power balance of the power grid. In those scenarios, the uncertainty integration method (UIM) identifies the best combination by minimizing the additional reserve requirements caused by the uncertainty of power sources. An integration process for uncertainties is formulated for stochastic unit commitment (SUC) problems and optimized by the improved genetic algorithm (IGA). The IGA is composed of five procedures and finds the optimal combination of unit status at the scheduled time, based on the determined source data. According to the number of unit systems, the IGA demonstrates better performance than the other optimization methods by applying reserve repairing and an approximation process. To account for the result of the proposed method, various UC strategies are tested with a modified 24-h UC test system and compared.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据