4.6 Article

Fabrication of graphene@graphite-based gas diffusion electrode for improving H2O2 generation in Electro-Fenton process

期刊

ELECTROCHIMICA ACTA
卷 260, 期 -, 页码 112-120

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.electacta.2017.11.048

关键词

Graphene; Gas diffusion electrode; Hydroxyl radical; Electron-Fenton

资金

  1. National Natural Science Foundation of China [51508435, 21406174]
  2. Natural Science Basic Research Plan in Shaanxi Province of China [2016JQ5011]
  3. Foundation of Key Laboratory of Education Department of Shaanxi Province of China [16JS045]

向作者/读者索取更多资源

A typical graphene@graphite-based gas diffusion electrode (G-GDE) with high conductivity and remarkable electrocatalytic activity was prepared for the electro-Fenton (E-Fenton) system in order to achieve an efficient degradation for organic pollutants. The G-GDE was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray powder diffraction (XRD), and nitrogen adsorption-desorption analysis. Continuous on-situ generation of H2O2 through an oxygen reduction reaction (ORR) was achieved at the non-metallic G-GDE cathode. Rhodamine B (RhB) was used as a model organic pollutant to evaluate the performance of the E-Fenton system with G-GDE cathode. The effects of pH, Fe2+ concentration were investigated. After 60 min, the removal rate reached 98% with G-GDE in the optimal condition, which was higher than that with traditional graphite-based gas diffusion cathode (GDE) and graphite sheet cathode (GE), and the energy consumption with G-GDE was only 84% of that with GDE under the same condition. The calculated electron transfer number (n) of the ORR with G-GDE was 2.1-2.2 in the selected potential range using rotating disk electrode. The results demonstrated that the addition of graphene could enhance the ORR activity by virtues of improving electrochemical conductivity and porous structure. Moreover, excellent corrosion resistance and reuse ability were also presented for the G-GDE electrode. So the G-GDE can be used as a low-cost and efficient cathode material for degradation of organic wastewater in E-Fenton system. (c) 2017 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据