4.6 Article

Interface-rich core-shell ammonium nickel cobalt phosphate for high-performance aqueous hybrid energy storage device without a depressed power density

期刊

ELECTROCHIMICA ACTA
卷 272, 期 -, 页码 184-191

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.electacta.2018.04.005

关键词

Core-shell structure; Co-Ni phosphate; Capacitive control; Hybrid energy storage device

资金

  1. Hebei Science Foundation for Distinguished Young Scholars [B2017203313]
  2. National Natural Sciecne Foundation of China [21403185, 51590882, 51631001]
  3. Hundred Excellent Innovative Talents Support Program in Hebei Province [SLRC2017057]
  4. Scientific Research Foundation for the Returned Overseas Chinese Scholars [CG2014003002]
  5. State Key Laboratory of Advanced Technology for Materials Synthesis and Processing (Wuhan University of Technology) [2017-KF-14]

向作者/读者索取更多资源

Introducing diffusion-controlled battery materials to supercapacitors, can significantly enhance the energy density of supercapacitors, which however encounter depressed power density due to the intrinsic sluggish charge storage kinetics of battery materials. This problem can be efficiently solved by modifying the microstructure, and enable capacitive controlled charge storage mechanism in the battery materials. In this work, a novel interface-rich core-shell structure with (NH4)(Ni,Co) PO4 center dot 0.67 H2O nanosheets @ single crystal microplatelets (NH4)(Ni,Co) PO4 center dot 0.67 H2O (NCoNiP@NCoNiP) is constructed via a facile two-step hydrothermal method, taking advantage of etching induced Kirkendall effect and Ostwald ripening. This unique structure can enable the extrinsic pseudocapacitance by providing extra charges (e.g. holes, electrons or voids) on the interfaces, and realize synergy and fast charge storage. Specifically, a maximum specific capacity of 190.3 mAh g(-1) and ultrahigh rate performance with capacity retention of 96.1% from 1 to 10 Ag-1 in a three-electrode test. The kinetic analysis indicates that the electrochemical response of the hybrid battery-supercapacitor storage devices shows obvious characteristic of supercapacitor especially at high scanning rates. Simultaneously, the hybrid battery-supercapacitor devices based on NCo-NiP@NCoNiP exhibits a high energy density of 44.5 Wh kg(-1) at a power density of 150 Wkg(-1), which maintains 30 Wh kg(-1) at high power density of 7.4 kWkg(-1) with capacitance retention 77.5% after 7000 cycles. This work provides a novel strategy for the application of battery materials in high power devices, by enabling the capacitive charge storage mechanism of battery materials through nanostructure engineering. (C) 2018 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据