4.6 Article

Structural transformation and electrochemical study of layered MnO2 in rechargeable aqueous zinc-ion battery

期刊

ELECTROCHIMICA ACTA
卷 276, 期 -, 页码 1-11

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.electacta.2018.04.139

关键词

Layered manganese dioxide; Zinc-ion battery; In situ diffraction

资金

  1. Global Frontier Program through the Global Frontier Hybrid Interface Materials (GFHIM) of the National Research Foundation of Korea (NRF) - Ministry of Science, ICT & Future Planning [2013M3A6B1078875]
  2. National Research Foundation of Korea (NRF) - Korea government (MSIP) [2017R1A2A1A17069397]
  3. National Research Foundation of Korea [2017R1A2A1A17069397] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

向作者/读者索取更多资源

Layered MnO2 is very attractive cathode material for zinc-ion battery (ZIB) due to its large interlayer distance, high discharge capacity, low cost, and environmental benignity. However, layered MnO2 exhibits capacity fading. Therefore, detailed studies of the structural transformation and electrochemical mechanism of layered MnO2 during cycling are urgently required for performance improvement. In this contribution, we have utilized in situ synchrotron, ex situ X-ray diffraction, and ex situ synchrotron X-ray absorption spectroscopy analyses in order to evaluate the structural transformation of a layered MnO2 during Zn-ion insertion. We found that during initial cycles, the electrode was able to maintain its layered structure; however, after prolonged cycles, it completely transformed into an irreversible spinel structure. We also observed the manganese dissolution from the electrode into the electrolyte during continuous cycling. The formation of irreversible spinel phase and manganese dissolution are responsible for capacity fading. Our findings provide the understanding for further improvement of layered MnO2 as cathode material for next generation ZIB systems. (C) 2018 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据