4.6 Article

Remote wireless control of an enzymatic biofuel cell implanted in a rabbit for 2 months

期刊

ELECTROCHIMICA ACTA
卷 269, 期 -, 页码 360-366

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.electacta.2018.02.156

关键词

Enzymatic biofuel cell; Rabbit implantation; Bioelectrochemistry; Wireless recording and control; Biocompatibility

资金

  1. French government program Investissements d'Avenir [ANR-10-NANO-03-01]

向作者/读者索取更多资源

A bioelectronic device comprising an enzymatic biofuel cell (GBFC) connected to a wireless tele-transmission system was implanted in a rabbit and its function was monitored and controlled in vivo for a period of 2 months. After the 18th day of implantation, the tele-transmission system was used to wirelessly charge and discharge the operational GBFC in vivo through a 100 k Omega load for 30 min each day. For a further 16 days of operation, the GBFC delivered 16 mu W mL(-1) continuously during each 30 min discharge each day for 16 days. At the end of the 2 month period of implantation the power output had diminished, which was most likely due to an inflammatory process. Our results also indicate that the duration of operational activity is increased by optimizing the interface between the GBFC and the body to minimize inflammatory processes and biofouling. These data provide a significant advance in the achievable output from a GBFC that is implanted in a mammal, and importantly provide a basis upon which to further develop stable implantable biofuel cells. Improving the in vivo performance of an implanted GBFC includes the development of biocompatible diffusing polymers to act as buffering diffusion barriers. (c) 2018 The Authors. Published by Elsevier Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据